Digital tools for diagnosis of infections in low-income settings

Kristina Keitel
Scientific Project Leader, Swiss TPH
Pediatric Emergency Medicine Attending, Inselspital Bern
Each year, 3.3 million children die from an acute febrile episode.
Children in LMICs are heavily affected by antibiotic over-prescription

Children 0-5 years
8 Low-Middle Income Countries

68%
(41-83%)
Prescribed antibiotics

24.5x
(7-59)
Estimated number of antibiotic prescriptions per child up to 5 years old

Fink et al., Lancet ID, 2019
Children in LMICs are heavily affected by incorrect antibiotic prescriptions

<table>
<thead>
<tr>
<th>Diagnosis</th>
<th>% of 282 febrile patients prescribed amoxicillin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper respiratory tract infection</td>
<td>69.5% (196)</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>11.0% (31)</td>
</tr>
<tr>
<td>Gastroenteritis</td>
<td>8.9% (25)</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>3.6% (10)</td>
</tr>
<tr>
<td>Fever without source</td>
<td>2.5% (7)</td>
</tr>
<tr>
<td>Skin infection, other than abscess</td>
<td>2.0% (6)</td>
</tr>
<tr>
<td>Oral thrush</td>
<td>1.4% (4)</td>
</tr>
<tr>
<td>Ear infection</td>
<td>0.4% (1)</td>
</tr>
<tr>
<td>Bronchiolitis</td>
<td>0.4% (1)</td>
</tr>
<tr>
<td>Viral illness</td>
<td>0.8% (2)</td>
</tr>
</tbody>
</table>

95% of febrile children received an antibiotic

Dosing:
- 29% within range (25-100mg/kg/d)
- 71% too small

Keitel K et al., PlosMed 2017
Antibiotics are primarily prescribed in the outpatient setting

80 – 90% of antibiotic use occurs in outpatient setting

WHO IS PREScribing?

74%

- General practice

- Hospital inpatients: 11%

- Hospital outpatients: 7%

- Dental practices: 5%

- Other community settings: 3%

Digital health interventions in LMICs

Client

Healthcare providers

Health systems management

Data services

Laboratory tests to order/interpretation? Treat? Refer?

eCDSS/eCDSA

WHO, 2016
Diagnostics and Treatment Decisions are inherently linked

Practice guidelines
- Quickly outdated
- Format inappropriate

Diagnostic tests
- Not available

In-service training/supervision
- Insufficient

Inappropriate treatment
Starting Point: Integrated Management of Childhood Illnesses

Assess

Classify

Treat/Refer

IF YES: Decide malaria risk: high or low

THEN ASK:
- **For fever?**
- **Fever last 7 days, lasts longer than 3 days a week?**
- **Has the child had measles within the last 3 months?**

LOOK AND FEEL:
- **Look for signs of MEASLES**
- **Generalized rash and**
 - One of these: cough, runny nose, or red eyes

IF the child has a fever now or within the last 3 months:
- **Look for white spots. Are they deep and separable?**
- **Look for purging away from the eye.**
- **Look for lesions of the mouth.**

EXPECTED OUTCOMES:
- **HIGH MALARIA RISK**
 - Malaria is significantly likely
 - **VERY SEVERE FEBRILE DISEASE**
 - Give quinine for severe malaria (first dose)
 - Give twice a day of an appropriate antimalarial
 - Treat the child for pneumonia
 - Give one dose of paracetamol (Ibuprofen for high fever)*
 - Rule disease other than malaria
 - **MALARIA**
 - Enter treatment with chloroquine or other recommended antimalarial
 - Give one dose of pyrimethamine/sulfadoxine for high fever (54°C or above)
 - Arrange for referral to seek immediate care
 - Follow-up in 2 days after hospital admission
 - **FEVER - MALARIA UNLIKELY**
 - Give one dose of paracetamol (Ibuprofen for high fever)*
 - Rule disease other than malaria
 - **FEVER - NO MALARIA**
 - Enter treatment with chloroquine or other recommended antimalarial
 - Give one dose of pyrimethamine/sulfadoxine for high fever (54°C or above)
 - Arrange for referral to seek immediate care
 - Follow up in 2 days after hospital admission
 - Rule disease other than malaria

* These temperatures are based on axillary temperature. Rectal temperature readings are approximately 0.5°C higher.
** Other important complications of measles - pneumonia, otitis media, diarrhea, encephalitis, and enanthema - are classified in other boxes.

Electronic decision support algorithms

- Cough?
- Malaria rapid test
 - CRP
- Cold
 - Paracetamol
IMCI 2014 – section on fever

Does the child have fever?
(by history or feels hot or temperature 37.5°C* or above)

Look and feel:
- Look or feel for stiff neck.
- Look for runny nose.
- Look for any bacterial cause of fever**.
- Look for signs of MEASLES.
 - Generalized rash and
 - One of these: cough, runny nose, or red eyes.

WHO, 2014
Look for local tenderness; oral sores; refusal to use a limb; hot tender swelling; red tender skin or boils; lower abdominal pain or pain on passing urine in older children.
- Malaria test NEGATIVE
- Other cause of fever PRESENT.

Green:
FEVER:
NO MALARIA

- Give one dose of paracetamol in clinic for high fever (38.5°C or above)
- **Give appropriate antibiotic treatment** for an identified bacterial cause of fever
- Advise mother when to return immediately
- Follow-up in 3 days if fever persists
- If fever is present every day for more than 7 days, refer for assessment

WHO, 2014
ePOCT: electronic clinical decision algorithm

Disease etiology
- Virus
- Bacteria
- Parasite

Clinical / lab decision tree

Host biomarkers
- Malaria rapid test
- CRP
- Cough
- Paracetamol
- Cold

Swiss TPH
eCDSS medical content development process

Scope

Diagnostic classifications

Identify areas in need/amenable for review, in need for evidence-generation

Perform scoping review, refine

External review

Software programming, internal validation, piloting (MOC cases, supervised consultation)
Global evidence-base- evaluation and management of common childhood infections

analytical
clinical/Outcome-based
epidemiological

? evidence
IMCI cough branch

Clinical screening:
- demographics
- medical history
- clinical signs

1) Severe disease requiring hospital-based treatment - antibiotics

2) Clinical pneumonia - antibiotics

3) Self-limiting, mild infection
STEP 1: clinical screening:
- demographics
- medical history
- clinical signs

1) Severe disease requiring hospital-based treatment
2) Relevant pre-test probability for bacterial pneumonia
3) Self-limiting, mild infection

STEP 2: test for bacterial pneumonia
A) Antibiotics
B) No antibiotics

Decision support through CDSA
Validation of the ePOCT tool

<table>
<thead>
<tr>
<th>Stage of maturity</th>
<th>1 & 2: Pre-prototype/prototype</th>
<th>3: Pilot</th>
<th>4: Demonstration</th>
<th>5: Scale-up</th>
<th>6: Integration/sustainability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Monitoring goals
- Functionality, stability
- Fidelity, quality

Stages of evaluation
- Feasibility/Usability
- Efficacy
- Effectiveness
- Implementation science

Illustrative number of system users
- 10–100
- 100–1000
- 10,000+
- 100,000+
ePOCT “efficacy” study

Children 2-59 months with fever, 9 OPDs in Dar es Salaam

Follow-up at D3, D7, D30
- Primary outcome: clinical failure by D7, non-inferiority margin: 3%
 - Severe symptom D0-D7
 - Cough+ tachypnea/chest indrawing D3
 - Persistent symptoms D7
- Secondary outcomes: antibiotic prescription, severe adverse events

Keitel et al., PlosMed 2017
Cough branch

3192 randomised

- **ePOCT**: 868 with non-severe respiratory symptoms
 - 3 lost to follow-up
 - 865 completed day seven follow-up (per protocol analysis)

- **eIMCI**: 858 with non-severe respiratory symptoms
 - 4 lost to follow-up
 - 854 completed day seven follow-up (per protocol analysis)
ePOCT subgroup analysis: cough branch

ATB prescription at D0

RD -38%; RR 0.06 (0.04, 0.09)

Clinical outcome

RR 0.60 (0.37, 0.98) RR 0.30 (0.10, 0.93)

Clinical Failure D7

Severe adverse events (2° hosp, deaths)

Keitel et al., CID, 2019
Algorithm Classifications – Antibiotic Prescription

- URTI
- Viral pneumonia
- Bacterial pneumonia
- Other bacterial infection
- Malaria

e-POCT, n=865
- URTI: 44%
- Viral pneumonia: 1%
- Bacterial pneumonia: 10%
- Other bacterial infection: 1%
- Malaria: 1%

eIMCI, n=854
- URTI: 60%
- Viral pneumonia: 4%
- Bacterial pneumonia: 36%
- Other bacterial infection: 1%
- Malaria: 10%
Outlook/next steps

Stage of maturity

<table>
<thead>
<tr>
<th>1 & 2: Pre-prototype/prototype</th>
<th>3: Pilot</th>
<th>4: Demonstration</th>
<th>5: Scale-up</th>
<th>6: Integration/sustainability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td> + +</td>
<td> + +</td>
<td> + +</td>
<td> + +</td>
</tr>
</tbody>
</table>

Monitoring goals

<table>
<thead>
<tr>
<th>Monitoring goals</th>
<th>Functionality, stability</th>
<th>Fidelity, quality</th>
</tr>
</thead>
</table>

Stages of evaluation

<table>
<thead>
<tr>
<th>Stages of evaluation</th>
<th>Feasibility/usability</th>
<th>Efficacy</th>
<th>Effectiveness</th>
<th>Implementation science</th>
</tr>
</thead>
<tbody>
<tr>
<td>Illustrative number of system users</td>
<td>10–100</td>
<td>100–1000</td>
<td>10 000+</td>
<td>100 000+</td>
</tr>
</tbody>
</table>
Future steps: adding granularity to the cough branch

STEP 1:
- Clinical screening:
 - Demographics
 - Medical history
 - Clinical signs

1) Severe disease requiring hospital-based treatment
2) Relevant pre-test probability for bacterial pneumonia
3) Need of treatment for reactive airway disease
4) Self-limiting, mild infection

STEP 2:
- Test for bacterial pneumonia
 - Decision support through CDSA
 - Improvement through machine learning

A) Antibiotics
B) No antibiotics
Next steps: ePOCT content extension

ePOCT+

Neonatal algorithm (G. Levine)

Age 2 month – 14 years (R. Tan, N. Vaezipour)
• Febrile+ non-febrile conditions
• Basic surgical problems

Chronic risk factors (R. Tan)
• Sickle cell disease
• Severe acute malnutrition
Next steps: Triage - Tree

• Electronic triage algorithm based on triage tools for LMICs
• Vetted by Tanzanian target users through a Delphi survey

J. van der Maat
A. Hartley